
Math Circles
The Insolvability of the Quintic

Winter 2023
Problem Sheet 2 Solutions

Q1. [Warm-up.] Express the following complex numbers in the form a+ bi, with a, b ∈ R.

(a) (4− 5i) + (1 + 2i).

(b) (3 + 5i)(1− i).

(c) (2 + 2i)2.

(d) i5.

Solution:

(a) (4− 5i) + (1 + 2i) = (4 + 1) + (−5 + 2)i = 5− 3i.

(b) (3 + 5i)(1− i) = 3− 3i+ 5i− 5i2 = 3 + 2i+ 5 = 8 + 2i.

(c) (2 + 2i)2 = 22 + 2(2)(2i) + (2i)2 = 4 + 8i+ 4i2 = 8i = 0 + 8i.

(d) i5 = i2i2i = (−1)(−1)i = i = 0 + (1)i.
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Q2. [Trigonometric form.] Express the following complex numbers in trigonometric form

z = r(cos θ + i sin θ).

(a) i.

(b) −i.

(c) 3. (Remember: real numbers are compelx numbers – they just have zero imaginary
part!)

(d) −3.

(e) 1 + i.

(f) 3 + 4i.

Solution:

(a) z = (1)(cos(π/2) + i sin(π/2)).

(b) z = (1)(cos(3π/2) + i sin(3π/2)).

(c) z = (3)(cos(0) + i sin(0)).

(d) z = 3(cos(π) + i sin(π)).

(e) z =
√
2(cos(π/4) + i sin(π/4)).

(f) z = 5(cos(θ) + i sin(θ)), where θ = tan−1(4/3) ≈ 0.927 rad.
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Q3. [Polar form.] Express the complex numbers in Q2 in polar form

z = reiθ.

Solution:

(a) z = (1)eiπ/2.

(b) z = (1)ei(3π)/2.

(c) z = (3)ei0.

(d) z = 3eiπ.

(e) z =
√
2ei(π/4).

(f) z = 5eiθ, where θ = tan−1(4/3) ≈ 0.927 rad.
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Q4. [De Moivre’s Theorem.] Using mathematical induction, prove that

[r(cos θ + i sin θ)]n = rn(cosnθ + i sinnθ)

for all positive integers n.

Note: The result is also true for negative integers (and zero). Can you prove this too?

Solution:

We will proceed by mathematical induction. The result is clearly true when n = 1. Let’s
assume that the result is true for n = k, where k ≥ 1 is an integer, and let’s consider what
happens when n = k + 1. We have

[r(cos θ + i sin θ)]k+1 = [r(cos θ + i sin θ)]k r(cos θ + i sin θ)

= rk(cos kθ + i sin kθ) r(cos θ + i sin θ) (by assumption for n = k)

= rk+1[(cos kθ cos θ − sin kθ sin θ) + i (cos kθ sin θ + cos θ sin kθ)]

= rk+1(cos(kθ + θ) + i sin(kθ + θ)) (trig identities!)

= rk+1(cos(k + 1)θ + i sin(k + 1)θ).

This shows that if the identity is true if n = k then it must be true for n = k + 1. Hence,
since the identity is true for n = 1, it must be the case that the identiy is tru for n = 2, 3, . . ..
Therefore, by the principle of mathematical induction, the identity is true for all positive
integers n.

The identity is also true if n = 0, because the left side in this case is

[r(cos θ + i sin θ)]0 = 1

and the right side is also

r0(cos 0 + i sin 0) = (1)(1 + 0i) = 1.

If n is negative integer, say n = −k with k > 0, we want to prove that

[r(cos θ + i sin θ)]−k = r−k(cos(−kθ) + i sin(−kθ)).

By multiplying both sides by [r(cos θ + i sin θ)]k, this equation is the same as

1 = r−k[r(cos θ + i sin θ)]k(cos(−kθ) + i sin(−kθ)).
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Let’s try to prove this, by starting with the right-side and showing that it must be equal to
1. We have

r−k[r(cos θ+i sin θ)]k(cos(−kθ) + i sin(−kθ))

= r−krk(cos kθ + i sin kθ)(cos(−kθ) + i sin(−kθ)) (by DeMoivre for k > 0)

= cos kθ cos(−kθ)− sin kθ sin(−kθ) + i(cos kθ sin(−kθ) + cos(−kθ) sin kθ)

= cos(kθ − kθ) + i sin(kθ − kθ) (trig identities!)

= cos 0 + i sin 0

= 1 + 0i

= 1,

as required! This completes the proof.
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Q5. [nth roots of complex numbers.] Using De Moivre’s theorem, find the following roots. Express
your answers in both standard and trigonometric forms.

Remember – the strategy is as follows. If we have a complex number, like w = 4i, and we
want to find its 5th roots say, then we are looking for all complex numbers z that satisfy
z5 = w.

(a) The square roots of i.

(b) The third roots of 8.

(c) The fourth roots of 1. (See also Q6.)

(d) The fifth roots of 1 + i.

Solution:

(a) We know that i = (1)(cos(π/2) + i sin(π/2)). So if z = r(cos θ + i sin θ) is a square root
of i (meaning z2 = i), we must have

r2 = 1 and 2θ =
π

2
+ 2kπ.

This gives us r = 1 (since r must be positive) and θ = π
4 + kπ. That is,

z = cos
(π
4
+ kπ

)
+ i sin

(π
4
+ kπ

)
.

Now, because cos and sin are 2π-periodic, we only need to consider k = 0 and k = 1
(the values of k will not give us anything new!). So the square roots of i are:

� When k = 0: z = cos
(π
4

)
+ i sin

(π
4

)
=

1√
2
+

1√
2
i.

� When k = 1: z = cos

(
5π

4

)
+ i sin

(
5π

4

)
= − 1√

2
− 1√

2
i.

This seems a bit weird! Let’s confirm:(
1√
2
+

1√
2
i

)2

=
1

2
+ 2

1√
2

1√
2
i+

1

2
i2 =

1

2
+ i− 1

2
= i.

So the first one is correct! The second one is too, by a similar check.

(b) We know that 8 = (1)(cos(0) + i sin(0)). So if z = r(cos θ + i sin θ) is a tird root of 8
(meaning z3 = 8), we must have

r3 = 8 and 3θ = 0 + 2kπ.

Proceeding as in part (a), we get the 3 third roots

3
√
8,

3
√
8

(
cos

2π

3
+ i sin

2π

3

)
and

3
√
8

(
cos

4π

3
+ i sin

4π

3

)
.
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We can simplify the latter two into

3
√
8

(
−1

2
+

√
3

2
i

)
and

3
√
8

(
−1

2
−

√
3

2
i

)
.

At this point, it would be an instructive exercise to cube each of the above to confirm
that we do indeed get 8. I’ll leave it to you to do this!

(c) We know that 1 = (1)(cos(0) + i sin(0)). So if z = r(cos θ + i sin θ) is a fourth root of 8
(meaning z4 = 8), we must have

r4 = 1 and 4θ = 0 + 2kπ.

Proceeding as in parts (a) and (b), we get the 4 fourth roots

1, cos
2π

4
+ i sin

2π

4
, cos

4π

4
+ i sin

4π

4
and cos

6π

4
+ i sin

6π

4
.

We can simplify these into:
1, i, −1, −i.

And indeed, we can check that the fourth power of each of these is equal to 1. For
instance,

(−i)4 = (−i)(−i)(−i)(−i) = (−1)4i2i2 = (1)(−1)(−1) = 1.
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Q6. [Roots of unity.] The complex solutions to the equation zn = 1 are called the nth roots of
unity. There are n distinct nth roots of unity, for each positive integer n. Let

ω = cos

(
2π

n

)
+ i sin

(
2π

n

)
.

(a) Show that ω is an nth root of unity. [Hint: What is ωn?]

(b) Show that ω2, ω3, . . . , ωn−1 are also nth roots of unity and that no two of them are
equal. So, together with ω, these are all nth roots of unity.

(c) Determine
ω + ω2 + · · ·+ ωn−1 and ωω2 · · ·ωn−1.

Solution:

(a) By De Moivre’s theorem, we have

ωn = cos

(
2πn

n

)
+ i sin

(
2πn

n

)
= cos (2π) + i sin (2π)

= 1 + 0i

= 1.

So z = ω satisfies the equation zn = 1, meaning that ω is an nth root of unity.

(b) Notice that for any integer k, we have

(ωk)n = ωkn = (ωn)k = 1k = 1.

So ωk is an nth root of unity. (Note: In the first and second equal signs above, we’re
secretly using De Moivre’s theorem to manipulate the exponents! That is, the laws of
exponentiation that you’re familiar with from the world of real numbers are still true
here, provided we raise to powers of integers.)

In particular, ω2, ω3, . . . , ωn−1 are all roots of unity.

Suppose two of them were equal, say ωk = ωl with k and l integers between 2 and n−1,
inclusive. Then

cos

(
2πk

n

)
+ i sin

(
2πk

n

)
= cos

(
2πl

n

)
+ i sin

(
2πl

n

)
.

If we equate the θ’s on both sides of these trigonometric forms, we conclude that 2πk
n

and 2πl
n must differ by an integer multiple of 2π. Let’s say

2πk

n
=

2πl

n
+ 2mπ (m ∈ Z).
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Then if we multiply through by n
2π , we get

k = l + nm.

But since k and l are strictly between 1 and n, they cannot differ by an integer multiple of
n unless that integer multiple is 0, in which case k = l. This shows that if ωk = ωl, with k
and l as above, then we must have that k = l. Consequently, no two of ω2, ω3, . . . , ωn−1

are equal.
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Q7. Let z(t) = cos 2πt+ i sin 2πt, where t is a real number such that 0 ≤ t ≤ 1.

(a) Imagining z(t) as describing the position of a complex number in the complex plane at
time t. At t = 0, the complex number is z(0) = 1 and as t increases, z(t) moves in a
path that ends back at z(1) = 1 at t = 1. Plot this path.

(b) Express the complex number z(t) in polar form as z(t) = r(t)eiθ(t). How does θ(t) change
as t goes from t = 0 to t = 1?

(c) Looking at part (a), we know that z(0) = 1 and z(1) = 1, so they should have the same
polar form. Does this contradict what you found in part (b)?

Solution:

(a) We get the unit circle!

(b) θ(t) goes from 0 to 2π. In particular, θ(t) changes.

(c) Although θ(t) did change we we went around the loop, the complex numbers z(0) and
z(t) didn’t, because

z(0) = (1)eiθ(0) = ei0 = cos 0 + i sin 0 = 1

and
z(2π) = (1)eiθ(2π) = (1)e2πi = cos 2π + i sin 2π = 1.
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Q8. Repeat Q7 but now let t go from 0 to 2. What do you notice? What if you let t go from 0
to 3?

Solution: The same thing happens. Even though θ changes, we end up at the same complex
number, because cos and sin are 2π-periodic. So as long as we do full loops around the circle,
we get back the same complex number, as expected.
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Q9. Going back to Q7(b), pick one of the two square roots of z(t) using your chosen polar form.
Let’s call it

√
z(t).

(a) What are
√

z(0) and
√

z(1)?

(b) Recalling that z(0) = z(1) = 1, what do your finding say about the usage of the notation√
z for square roots of complex numbers?

Solution:

(a) Our polar form is z(t) = e2πti. So a possible square root has one-half of the θ(t) = 2πti
that we’ve chosen. That is, we can take√

z(t) = eπti.

In this case, we have
√

z(0) = e0 = 1 and
√

z(1) = eπi = −1.

(b) This is a bit weird! Above we got
√

z(0) = 1 and
√
z(1) = −1. But z(0) = z(1) = 1,

so we seem to be saying that
√
1 = 1 and

√
1 = −1 simultaneously! So our usage of the

symbol
√

is problematic. We are not getting a well-defined function that produces a
specific output for a given input. What we’re getting looks like a type of “multivalued”
function, which is pretty confusing! How do we choose whether

√
1 = 1 or

√
1 = −1?

The upshot here is that the notation
√
z can be very ambiguous when we work with

complex numbers. (Even if we’re taking square roots of real numbers – something as
simple as z = 1!)
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